If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=16t^2+50t+10
We move all terms to the left:
0-(16t^2+50t+10)=0
We add all the numbers together, and all the variables
-(16t^2+50t+10)=0
We get rid of parentheses
-16t^2-50t-10=0
a = -16; b = -50; c = -10;
Δ = b2-4ac
Δ = -502-4·(-16)·(-10)
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{465}}{2*-16}=\frac{50-2\sqrt{465}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{465}}{2*-16}=\frac{50+2\sqrt{465}}{-32} $
| x=3;4x3+2 | | 3w-45=54 | | y=25,000(0.86)^5 | | 5(g−71)=60 | | 11r-17+2r=17r+19-7r | | –2k=8k−10k | | 8=0÷k | | 23x6=(20+3)=6 | | y-3.2=6.4 | | 125x-75x+42,975=45,900-175x | | a=2.1 | | 32=y+3.7 | | 6x-1+3x=53 | | (a-3)(a+7)=0 | | 15t-10=3t+14 | | 9999999999999999999999999999999+j=8 | | -22+6q-14=-16+7q-4 | | 15.5-2.5x=1.2(1.04+6.4x) | | -56+18x=94+15x | | (7x-7)°(6x+8)=180 | | -5x-5=-6x-12 | | 123+7x=183 | | -5x-5=-6x-22 | | 28=r-12;41,42,43 | | a=6.4, | | -x+5=55+4x | | 5+2d=19 | | -2(710x)=3(10x+12) | | w/8+12=19 | | x^2+x-31=0 | | 14x-40=44 | | –16=4j |